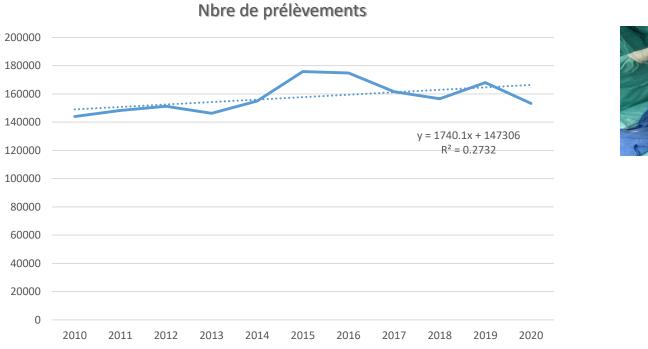
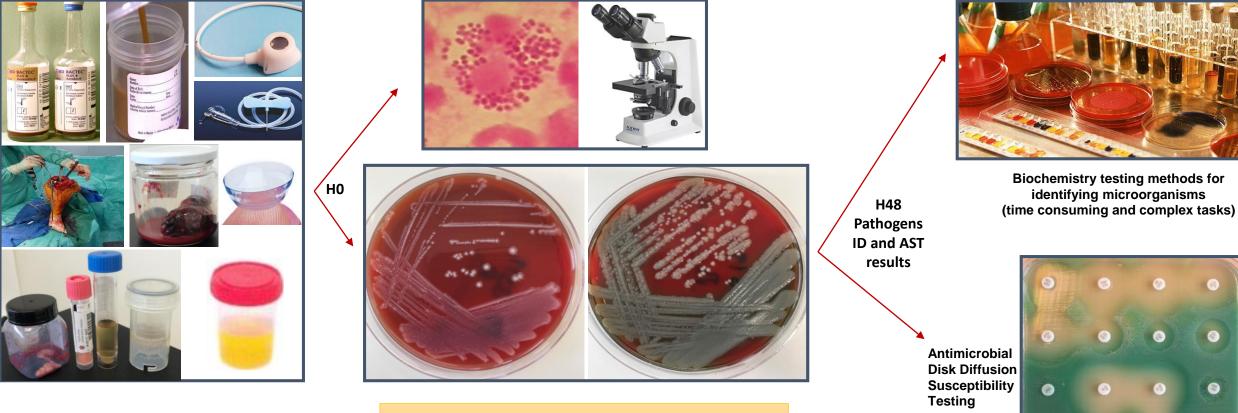
Automatisation totale en bactériologie diagnostique : réalité ou fantaisie ?

Dr A. CHERKAOUI, PhD-FAMH Laboratoire de Bactériologie

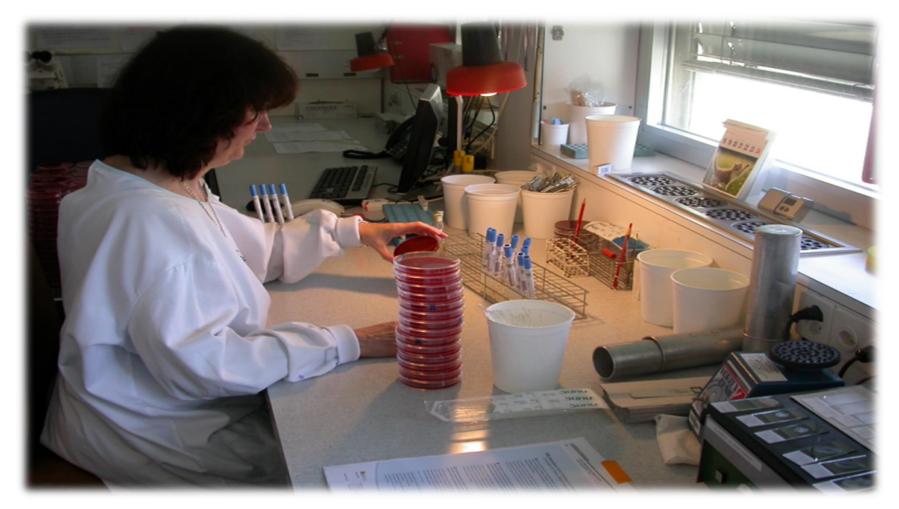


ccCTA - 17 septembre 2021

There is no conflict of interest


- Conventional diagnostic work-up
- MALDI-TOF/MS
- Total Laboratory Automation
- Fully Automated solution for Antimicrobial Disk Diffusion Susceptibility Testing

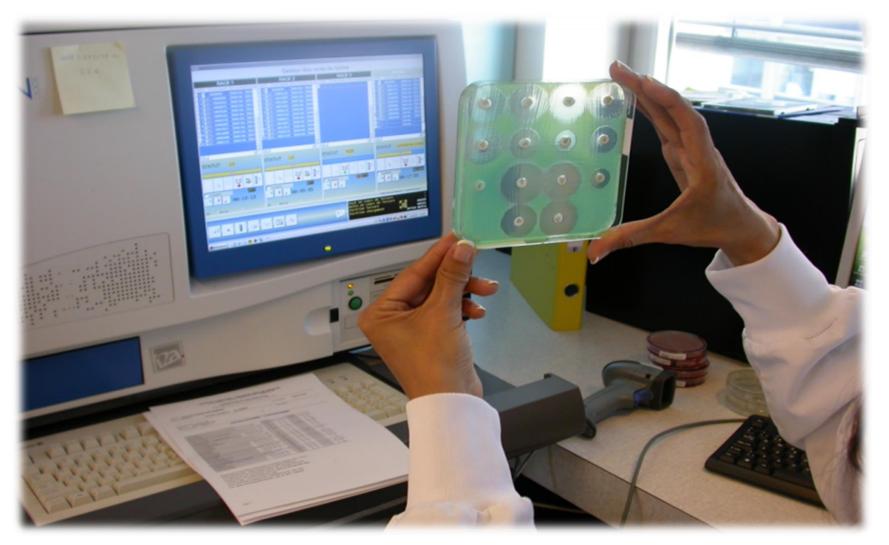
Laboratoire de Bactériologie Hôpitaux universitaires de Genève


Conventional diagnostic work-up

These routine laboratory techniques ensure an accurate identification of most microorganisms

<u>BUT</u>

Conventional diagnostic work-up STEP-1: Gram stain, samples inoculation on different culture media and incubation


> 1000 culture media per day / 4 Technologist (full time)

Conventional diagnostic work-up STEPs 2 to 4: Incubation of culture media plates, Reading and Microbial identification

> 2000 culture media per day

Conventional diagnostic work-up STEP-5: Antimicrobial susceptibility testing

> 100 AST per day / 1 Technologist (full time)

MDPI

Article **Mortality After Delay of Adequate Empiric Antimicrobial Treatment of Bloodstream Infection**

Merel M. C. Lambregts ^{1,*,†}, Roos Wijnakker ^{1,†}, Alexandra T. Bernards ², Leo G. Visser ¹, Saskia le Cessie³ and Mark G. J. de Boer¹

Adequacy of Early Empiric Antibiotic Treatment and Survival in Severe Sepsis: Experience from the MONARCS Trial

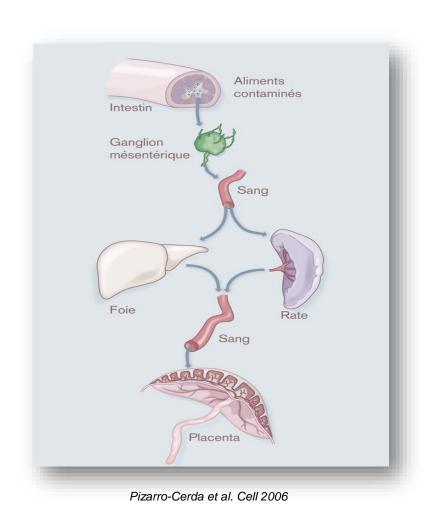
Rodger D. MacArthur,¹ Mark Miller,² Timothy Albertson,³ Edward Panacek,³ David Johnson,⁴ Leah Teoh,⁵ and William Barchuk⁵

¹Wayne State University, Detroit, Michigan; ⁵Abbott Laboratories, Parsippany, New Jersey; ³University of California, Davis, Sacramento, California; and ²McGill University, Montreal, and ⁴Department of Medicine, Royal University Hospital, Saskatoon, Canada

As part of the Monoclonal Anti-TNF: A Randomized Controlled Sepsis (MONARCS) trial, which enrolled patients with suspected sepsis, we sought to determine whether adequate antibiotic therapy was associated with a decreased mortality rate. The study enrolled 2634 patients, 91% of whom received adequate antibiotic therapy. The mortality rate among patients given adequate antibiotic treatment was 33%, versus 43% among patients given inadequate treatment (P < .001). We conclude that adequate antibiotic therapy results in a significant decrease in the crude mortality rate among patients suspected of sepsis.

Impact of Inadequate Empirical Therapy on the Mortality of Patients with Bloodstream Infections: a Propensity Score-Based Analysis

Pilar Retamar,^a María M. Portillo,^a María Dolores López-Prieto,^b Fernando Rodríguez-López,^c Marina de Cueto,^a María V. García,^d María J. Gómez,^e Alfonso del Arco,^f Angel Muñoz,⁹ Antonio Sánchez-Porto,^h Manuel Torres-Tortosa,ⁱ Andrés Martín-Aspas,ⁱ Ascensión Arroyo,^k Carolina García-Figueras,^b Federico Acosta,¹ Juan E. Corzo,^m Laura León-Ruiz,ⁿ Trinidad Escobar-Lara,^o Jesús Rodríguez-Baño,^{a,p} and the SAEI/SAMPAC Bacteremia Group



LETTER TO THE EDITOR

Misidentification of Listeria monocytogenes by the Vitek 2 System

Niall De Lappe, Ciara Lee, Jean O'Connor, Martin Cormican

National Salmonella, Shigella & Listeria Reference Laboratory, Medical Microbiology Department, University Hospital Galway, Galway, Ireland

Brucellose acquise au laboratoire

<u>Inde</u>

Patient aux urgences avec drainage d'un abcès pleural

- Envoi du prélèvement au labo sans autre indication
- Inoculation des milieux de culture en class 2 biosafety
- Absence de germe au Gram
- 72h, croissance de <u>cocobacilles à Gram négatif</u>
- Identification API 20 NE panel (BioMérieux): Moraxella phenylpyruvica

Après 22 jours, identification définitive pour Brucella !!!

26 personnes travaillant dans laboratoire

- 19 physiquement présent
- 1 a « reniflé » les milieux de culture
- 6 ont manipulé (dont une femme enceinte)

Table 1. Serum titers of Brucella melitensis in exposed laboratory personnel (exposure between 27 June to 9 July).

Laboratory worker	Prophylaxis received	Observed titer(s) ^a							
		11 Jul	25 Jul	8 Aug	22 Aug	5 Sep	19 Sep	3 Oct	17 Oct
1	No	0		0		0			0
2 (HR)	No	0		0	1:80; <1/160	1:320°; 1:1280°			

[Prevention of Laboratory-Acquired Brucellosis. CID 2004; 38: 119]

MALDI-TOF/MS

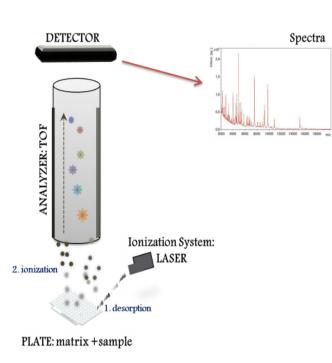
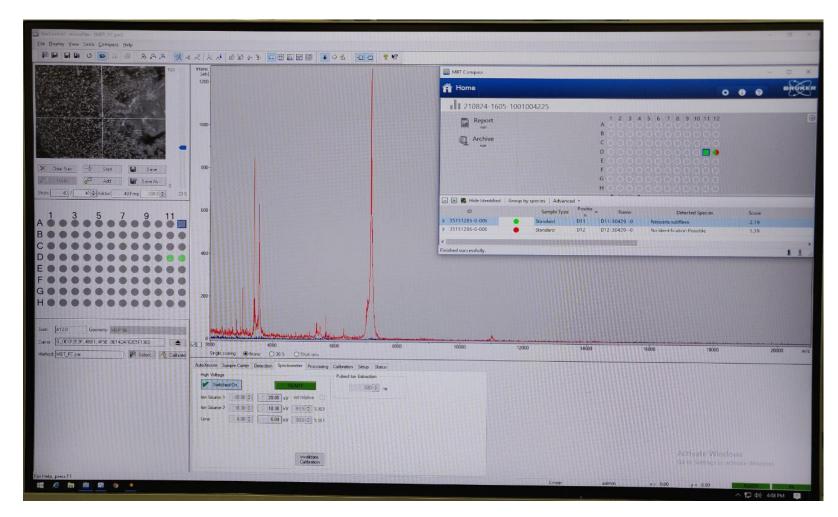
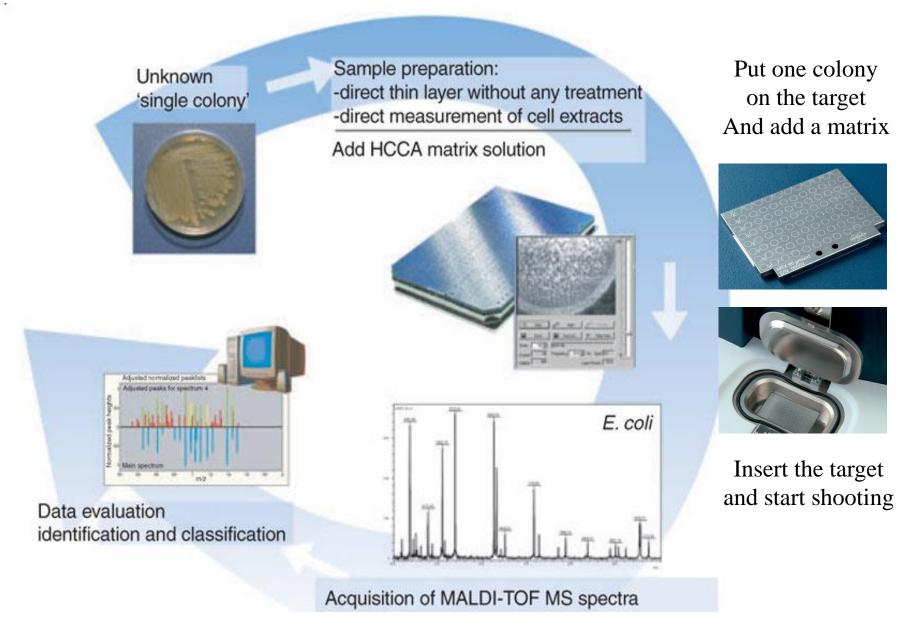




Figure 1. Schema showing the linear mode workflow in a MALDI–TOF MS system.

JOURNAL OF CLINICAL MICROBIOLOGY, Apr. 2010, p. 1169–1175 0095-1137/10/\$12.00 doi:10.1128/JCM.01881-09 Copyright © 2010, American Society for Microbiology. All Rights Reserved.

Comparison of Two Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Methods with Conventional Phenotypic Identification for Routine Identification of Bacteria to the Species Level[∇]

Abdessalam Cherkaoui,^{1*} Jonathan Hibbs,² Stéphane Emonet,¹ Manuela Tangomo,² Myriam Girard,² Patrice Francois,² and Jacques Schrenzel^{1,2}

> Clinical Microbiology Laboratory¹ and Genomic Research Laboratory,² Service of Infectious Diseases, University of Geneva Hospitals (HUG), CH-1211 Geneva 14, Switzerland

Received 23 September 2009/Returned for modification 23 November 2009/Accepted 9 February 2010

Cost and timeliness estimates of Bruker-based identification

	<u>Cost per isolate (\$US)</u> Avg. Total		<u>Turnaround time (hr)</u> Avg. Total		
High confidence MALDI-TOF MS (n=636)	\$0.50	\$318	0.08	53	
Lower-confidence and Ambiguous MALDI-TOF MS (n=84)	\$10.50	\$882	24	2,016	
. /	Total cost:	\$1,200	Average ti	me: 3 hrs	

Accuracy of MALDI-TOF MS identifications of 720 clinical isolates

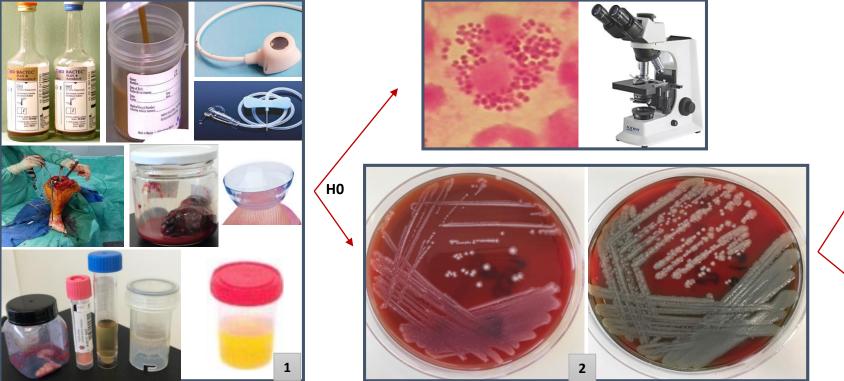
 Concordant with conventional methods Concordant with PCR Incorrect or ambiguous 							
High confidence identifications			88,8%				
Ambiguous	81/720 (11%)						
High confidence identifications			94,4%				
Ambiguous	40/720 (5.6%)						
0	200	400	600				

Cost and timeliness estimates of conventional identification

	<u>Cost per isolate (\$US)</u> Avg. Total		<u>Turnaround time (hr)</u> Avg. Total		
<i>E. coli</i> (n=216)	\$0.20	\$43	1	216	
<i>S. aureus</i> (n=55)	\$1.50	\$83	1	55	
Other (n=449)	\$10.00	\$4,490	24	10,776	
All isolates (n=720)	Total cost:	\$4,616	Average time: 15 hrs		

Shimadzu

Bruker

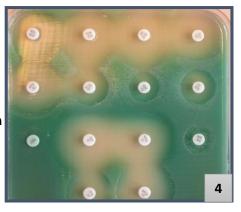

Evaluation of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Rapid Identification of Beta-Hemolytic Streptococci[⊽]

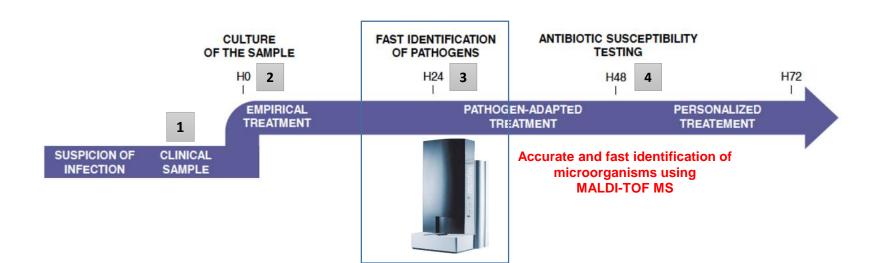
Abdessalam Cherkaoui,¹* Stéphane Emonet,¹ José Fernandez,¹ Didier Schorderet,¹ and Jacques Schrenzel^{1,2}

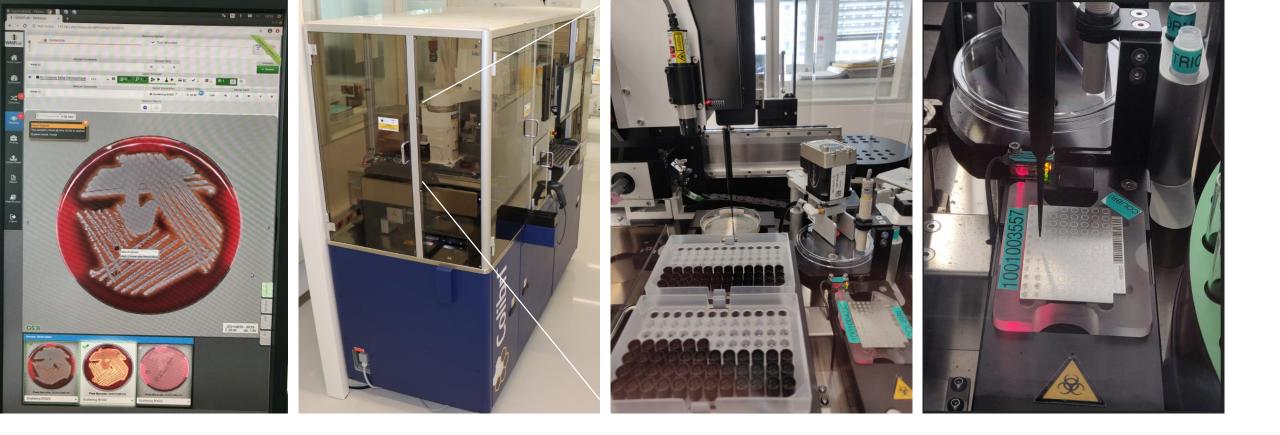
Bacteriology Laboratory¹ and Genomic Research Laboratory, Department of Internal Medicine,² Service of Infectious Diseases, University of Geneva Hospitals (HUG), CH-1211 Geneva 14, Switzerland

TABLE 1. Accuracy of MALDI-TOF MS identification of 386 beta-hemolytic streptococcal isolates^a

University of Geneva Hospitals (1100), CIT-1211 Geneva 14, Swaterland				No. of isolates (%) found by:		
			Organism group (no. of isolates) and identification parameter	MALDI-TOF MS identification with score of >2.0	Vitek2 identification	16S rRNA gene sequencing
			Streptococcus pyogenes (52) Species correct Major error Minor error No identification	52 (100) 0 0 0	48 (92) 2 (3.8) 0 2 (3.8)	4 (7.7)
			Streptococcus agalactiae (306) Species correct Major error Minor error No identification	306 (100) 0 0 0	269 (88) 2 (0.7) 32 (10.5) 3 (1.0)	37 (12)
	1 States		Streptococcus dysgalactiae (28) Species correct Major error Minor error No identification	28 (100) 0 0 0	11 (39) 7 (25) 1 (3.6) 9 (32)	17 (6.1)
		Paget				
Scarlatine	Angine	Fasciite nécrosante				




H48 Pathogens ID and AST results


> Antimicrobial Disk Diffusion Susceptibility Testing

Biochemistry testing methods for identifying microorganisms (time consuming and complex tasks)

Automatic System for Colony Picking and MALDI-TOF Targets Preparation

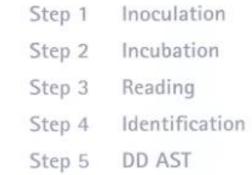
Applications of MALDI-TOF mass spectrometry in clinical microbiology

- MALDI-TOF MS to identify rare pathogenic bacteria
- MALDI-TOF MS directly from positive blood culture rapid identification protocols
- MALDI-TOF MS directly from urine samples

• ...

- MALDI-TOF-based subtyping as a tool for outbreak investigation
- Antibiotic resistance testing using MALDI-TOF MS

Total Laboratory Automation (TLA)

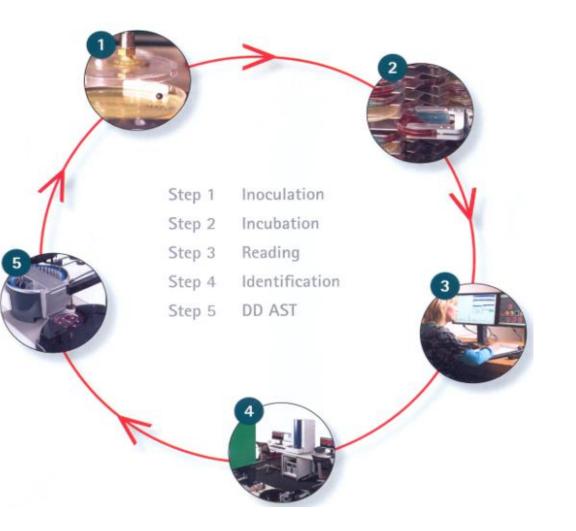


Step-1

Step-5

Step-4

1

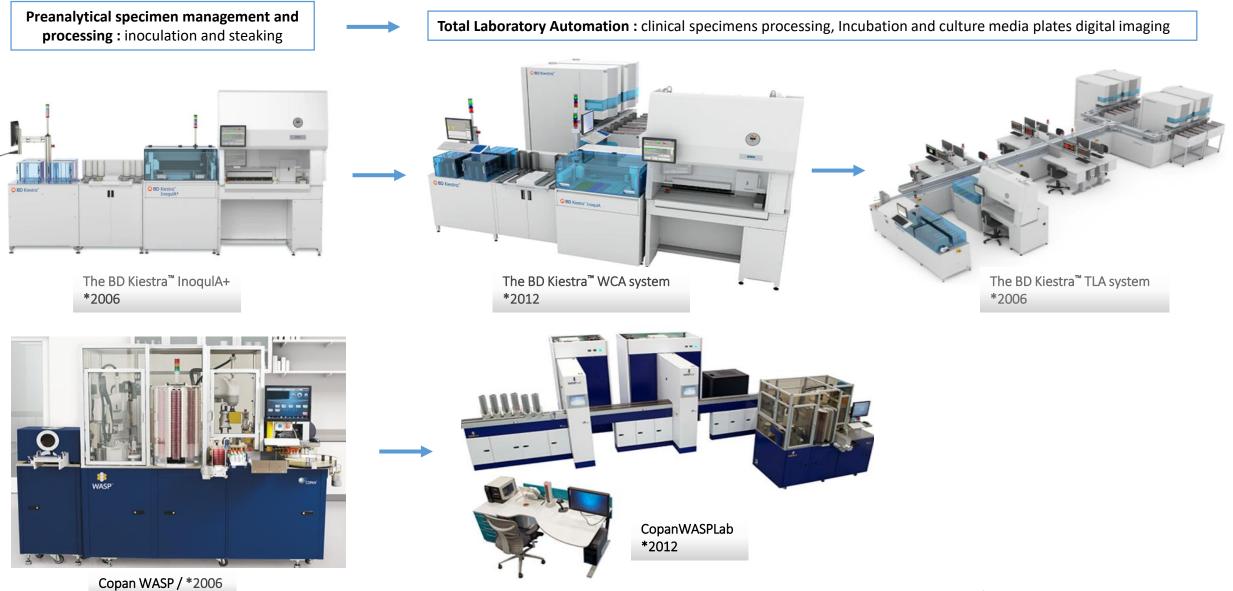

Futur of mic



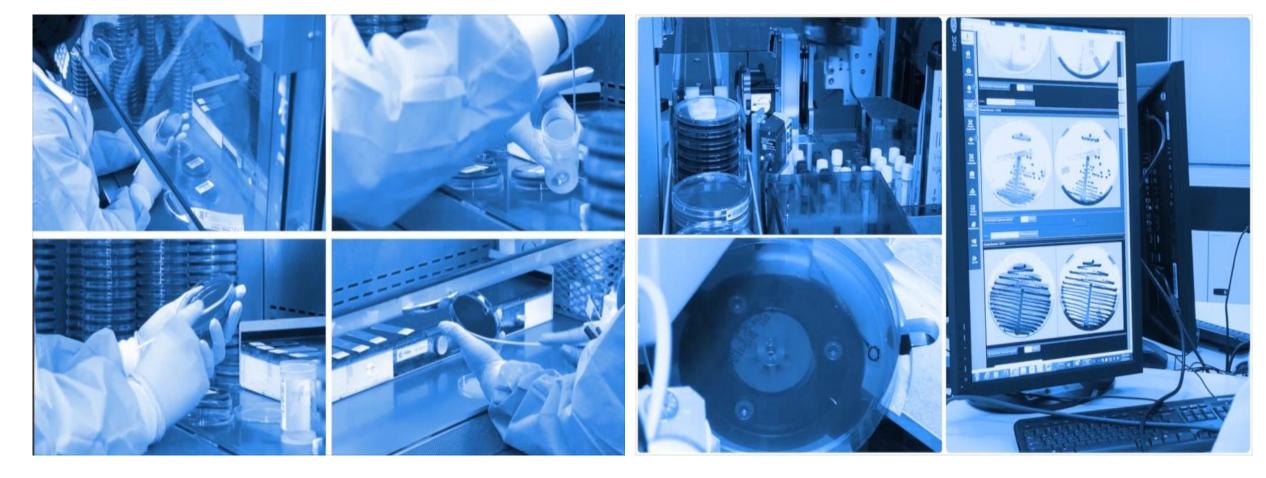
Step-3

The beginning of great changes in the Bacteriology Lab

Copan Diagnosis, Inc. www. Copanusa.com



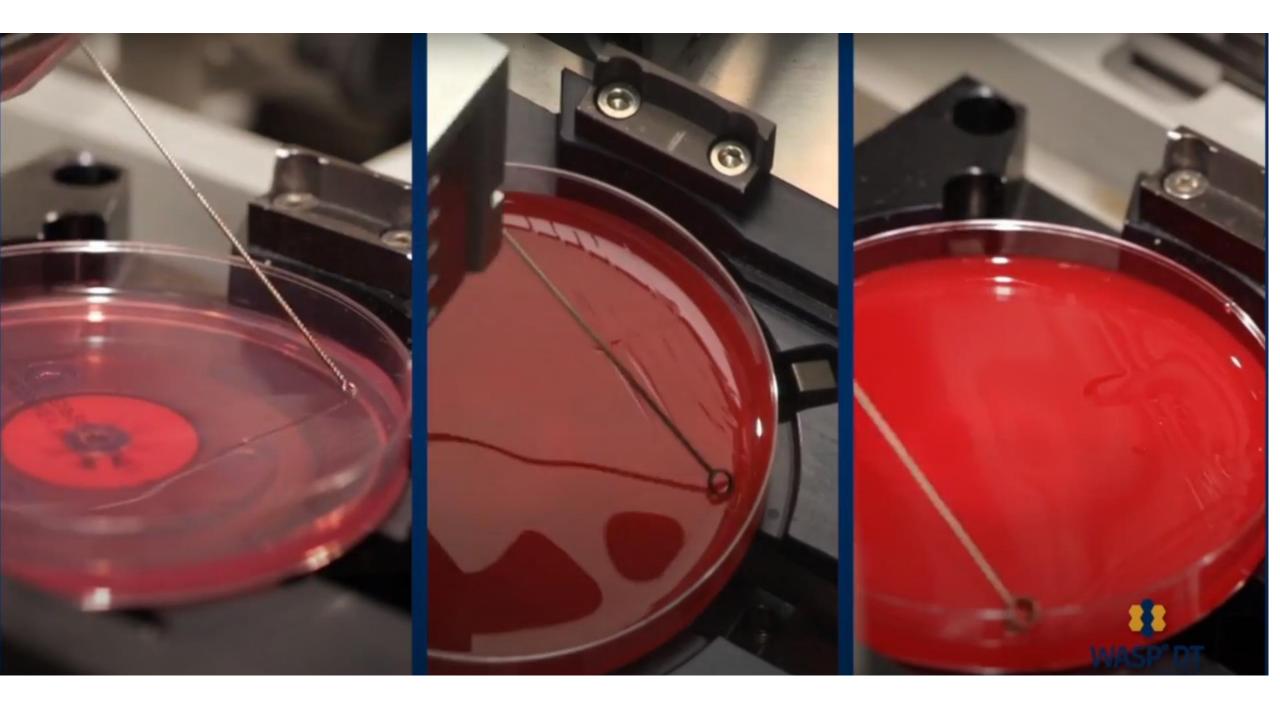
DEONET factory, the Netherlands (Fot. ABB)



S www.chroniclelive.co.uk

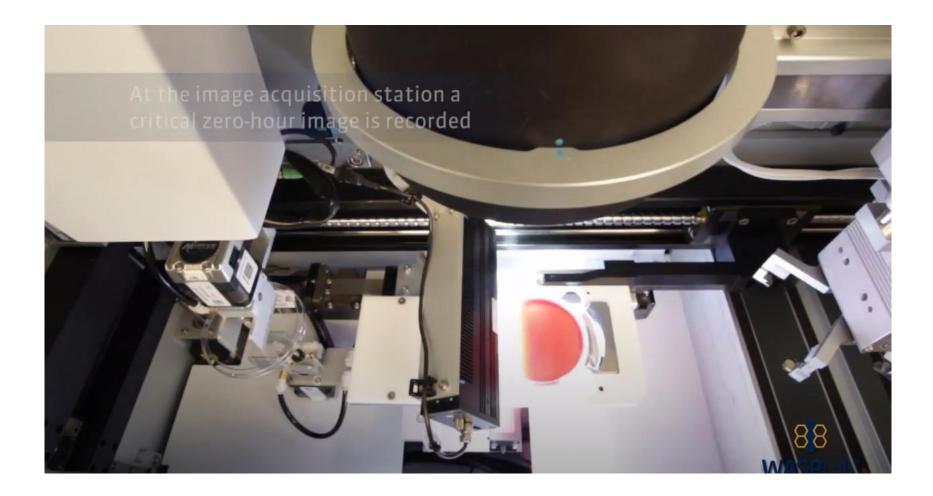
Progressive automation of Microbiology culture-based testing

*First installation in routine diagnostic laboratory


Traditional Manual Process

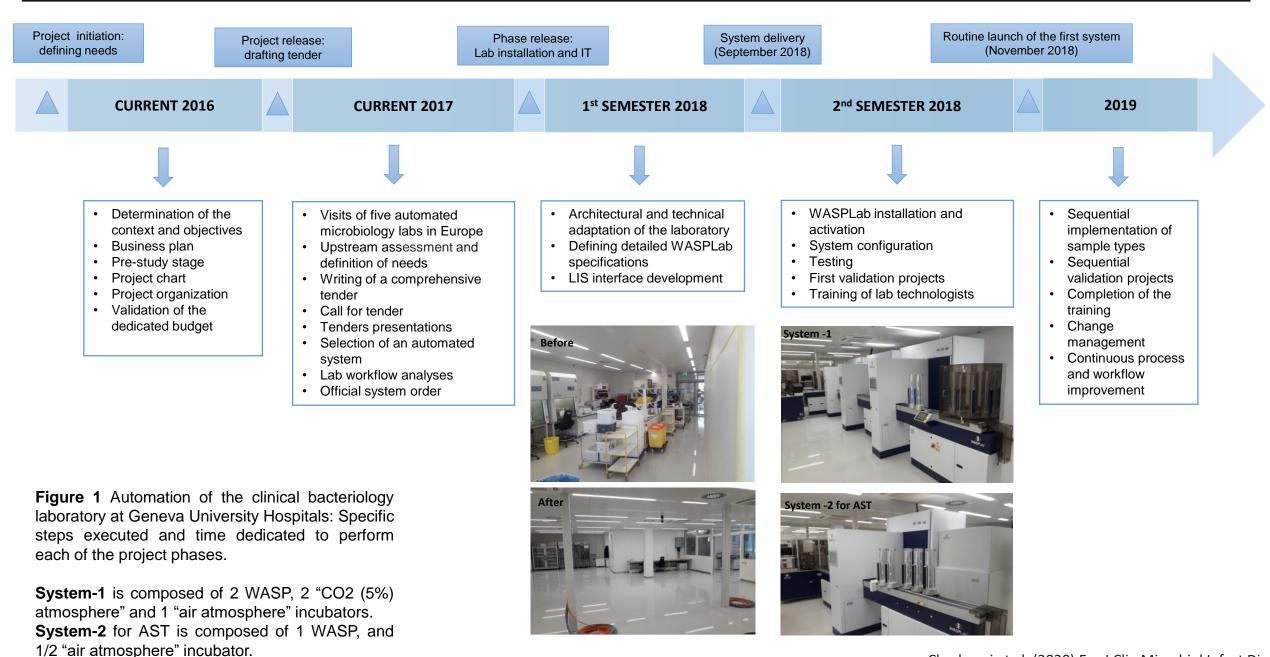
Fully Automated Process

(Courtesy M. Savarese, Copan)



IS FE THE

Individual plate shelves ensure homogenous environmental conditions and excellent thermal conductivity


J29

J28

TLA : Project management and change management

Eur J Clin Microbiol Infect Dis

Cherkaoui et al. (2020) Eur J Clin Microbiol Infect Dis

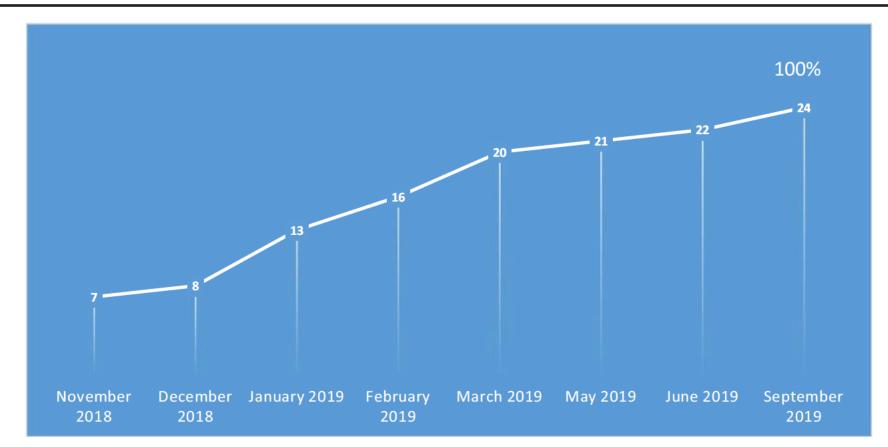
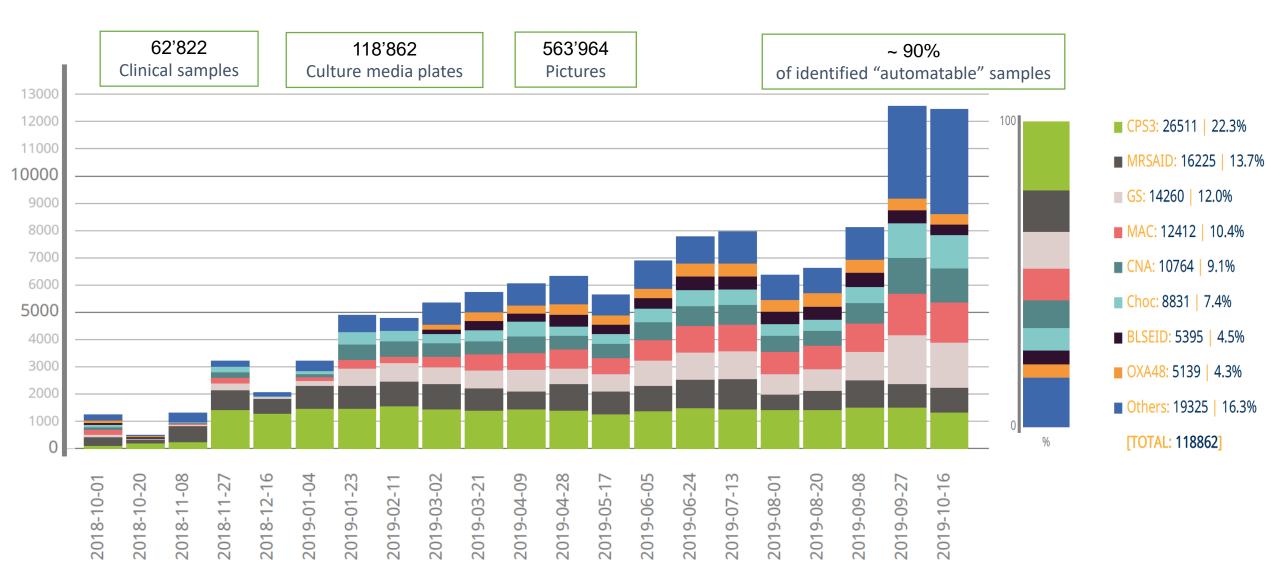
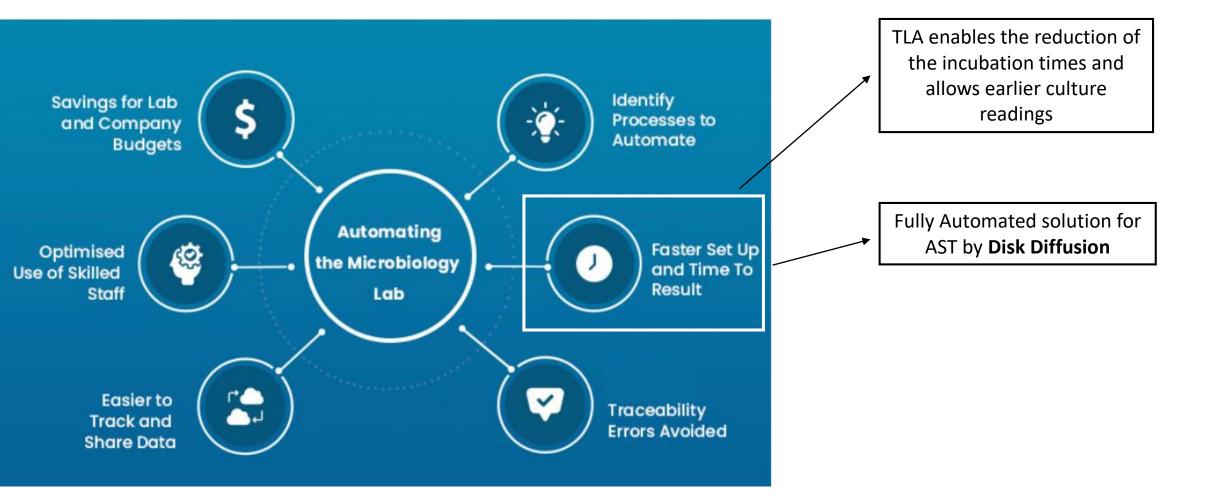



Fig. 2 Number of laboratory technologists trained to perform bacteriology analyses on the WASPLabTM

Figure 3 Sequential implementation on the WASPLabTM of the various sample types referred to the bacteriology laboratory at Geneva University Hospitals between October 2018 and October 2019


CPS3, CHROMID[®] CPS[®] Elite; MRSAID, CHROMID[®] MRSA; GS, Blood agar; MAC, MacConkey agar; CNA, CNA agar; Choc, Chocolate agar; BLSEID, CHROMID[®] ESBL; OXA48, CHROMID[®] OXA-48

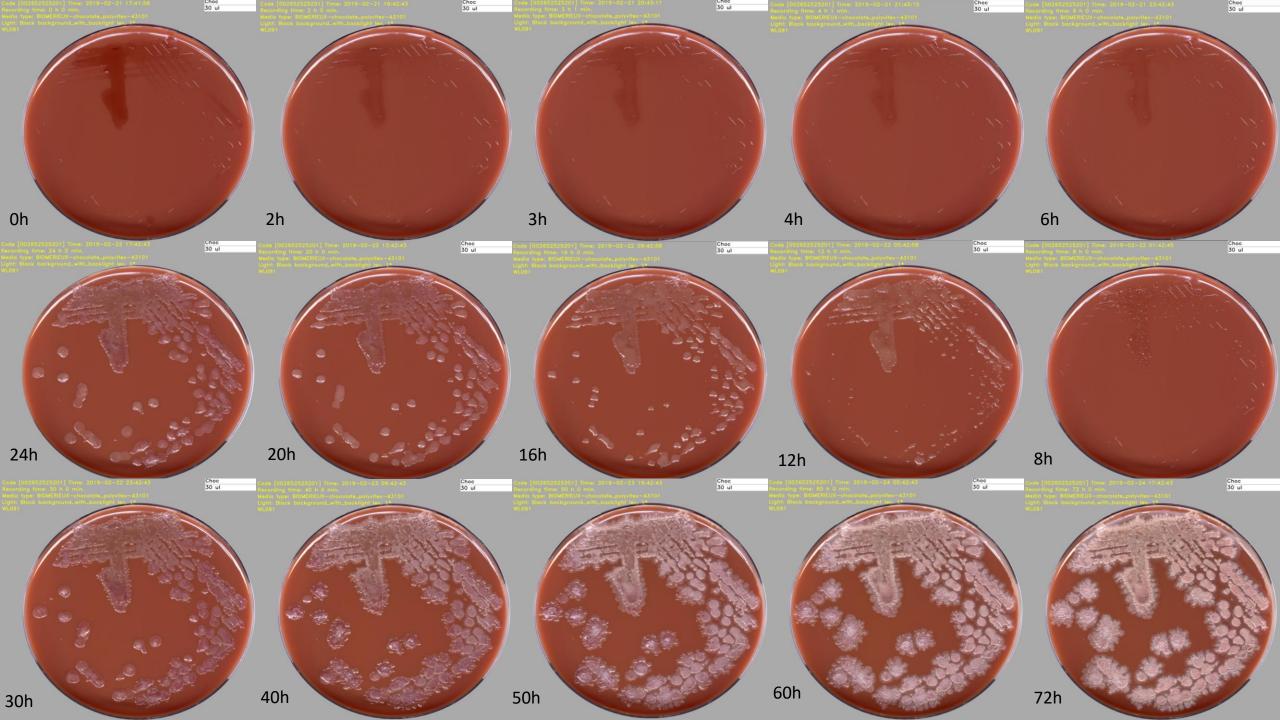
Cherkaoui et al. (2020) Eur J Clin Microbiol Infect Dis

Laboratory efficiency improvement

Contents lists available at ScienceDirect

Clinical Microbiology and Infection

journal homepage: www.clinicalmicrobiologyandinfection.com


Original article

Copan WASPLab automation significantly reduces incubation times and allows earlier culture readings

A. Cherkaoui ^{1, *}, G. Renzi ¹, N. Vuilleumier ^{2, 3}, J. Schrenzel ^{1, 4}

¹⁾ Bacteriology Laboratory, Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland
 ²⁾ Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland
 ³⁾ Division of Laboratory Medicine, Department of Medical Specialities, Faculty of Medicine, Geneva, Switzerland
 ⁴⁾ Genomic Research Laboratory, Division of Infectious Diseases, Department of Medical Specialities, Faculty of Medical Specialities, Faculty of Medicine, Faculty of Medicine, Geneva, Switzerland

Table 1: The incubation protocols, the culture media used for each sample type, and the number of samples included in the derivation set and in the independent validation set.

CPE: Carbapenemase-producing Enterobacteriaceae, MRSA : Methicillin-resistant *Staphylococcus aureus* , MSSA: Methicillin susceptible *Staphylococcus aureus* , ESBL : Extended-spectrum beta-lactamases; CNA agar: Colistin-Nalidixic Acid agar

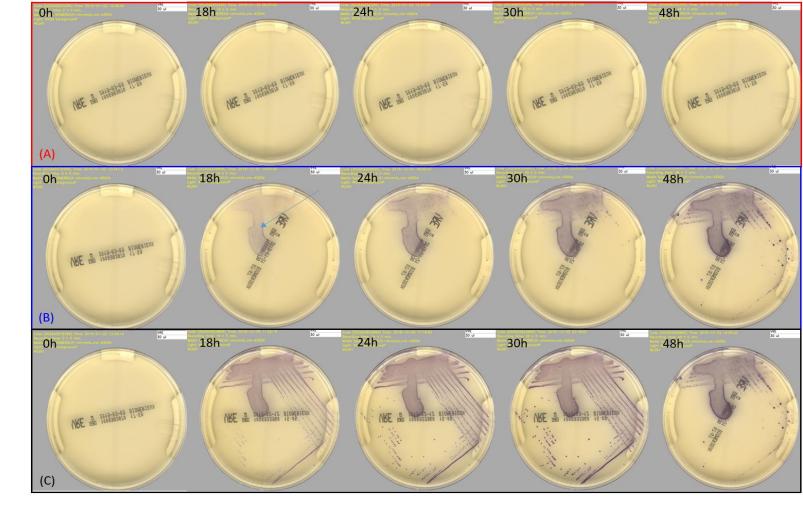
	WASP coupled to conventiona manual diagnos		WASPLab		
Clinical sample types	Culure media type	Routine incubation period	Number of samples included in the derivation set	Number of samples included in the independant validation set	
Urine specimens	CHROMID® CPS® Elite (BioMérieux, Geneva, Switzerland)	18h-24h and 48h	109	266	
Genital tract specimens	Blood agar, chocolate agar, CNA agar, and MacConkey agar	24h and 48h	92	189	
Non-sterile site specimens	Blood agar, chocolate agar, CNA agar, and MacConkey agar	24h, 48h and 72h	50	109	
Nasal and inguinal/perineal screening-ESwabs for MRSA and MSSA	CHROMID® MRSA (BioMérieux) and SaSelect Medium (BioRad)	18h-24h and 48h	148	181	
Rectal screening-ESwabs for ESBL- producer and CPE	CHROMID® ESBL (BioMérieux) coupled to CHROMID® OXA-48 (BioMérieux)	18h-24h and 48h	84	66	

Total 483

811 / (1294 samples)

Table 7 : Definitive incubation protocoles based on the derivation and validation studies

CPE: Carbapenemase-producing Enterobacteriaceae, MRSA: Methicillin-resistant Staphylococcus aureus, MSSA: Methicillin susceptible Staphylococcus aureus, ESBL : Extended-spectrum beta-lactamases

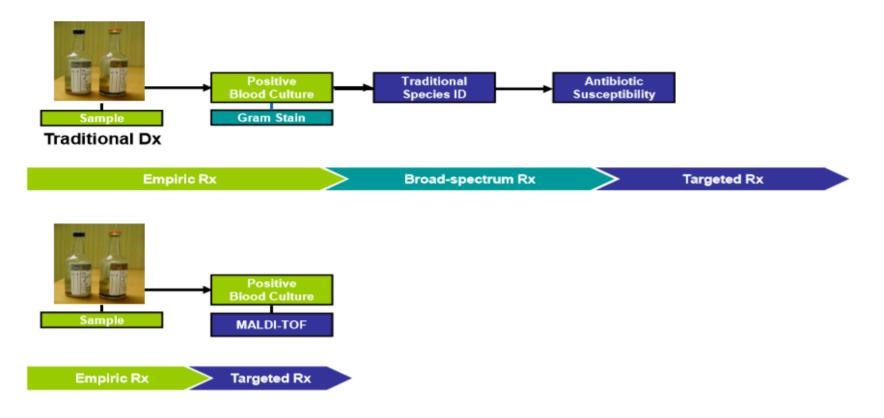

			WASPLab			
	Clinical samples type		Incubation time			
Routine incubation period		Picture at T0	Intermediate incubation time	Final incubation time		
18h-24h and 48h	Urine specimens	Yes	18h	24h		
24h and 48h	Genital tract specimens	Yes	16h	28h		
24h, 48h and 72h	Non-sterile site specimens	Yes	16h	28h		
18h-24h and 48h	Nasal and inguinal/perineal screening- ESwabs for MRSA and MSSA	Yes	No	18h		
18h-24h and 48h	Rectal screening-ESwabs for ESBL- producer and CPE	Yes	Νο	16h		

Automated Incubation and Digital Image Analysis of Chromogenic Media Using Copan WASPLab Enables Rapid Detection of Vancomycin-Resistant Enterococcus

Abdessalam Cherkaoui^{1*}, Gesuele Renzi¹, Yannick Charretier², Dominique S. Blanc^{3,4}, Nicolas Vuilleumier^{5,6} and Jacques Schrenzel^{1,2}

¹ Bacteriology Laboratory, Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland, ² Genomic Research Laboratory, Division of Infectious Diseases, Department of Medical Specialities, Faculty of Medicine, Geneva, Switzerland, ³ Service of Hospital Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland, ⁴ Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland, ⁶ Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland, ⁶ Division of Laboratory Medicine, Department of Medical Specialities, Faculty of Medicine, Geneva, Switzerland

		Plating	Incubation times				
Clinical sample type	Solid culture media type	ype volume, μl	Picture at TO	First intermediate incubation time, hr	Second intermediate incubation time, hr	Final incubation time, hr	
Rectal screening-Eswab for VRE	CHROMID [®] VRE (BioMérieux)	30	Yes	18	24	30	


ORIGINAL ARTICLE

Rapid identification by MALDI-TOF/MS and antimicrobial disk diffusion susceptibility testing for positive blood cultures after a short incubation on the WASPLab

Abdessalam Cherkaoui¹ · Gesuele Renzi¹ · Nouria Azam¹ · Didier Schorderet¹ · Nicolas Vuilleumier^{2,3} · Jacques Schrenzel^{1,4}

Received: 18 November 2019 / Accepted: 12 January 2020 © Springer-Verlag GmbH Germany, part of Springer Nature 2020

Graph adapted from AdvanDx

Microorganisms		Number of non- duplicate strains analyzed	Incubation time required for MALDITOF/MS-based species identification from short subcultures growing on solid media (hours)	Incubation time required for 0.5 McFarland suspension from short subcultures growing on solid media for AST by disk diffusion (hours)
Enterobacteriaceae	Escherichia coli	20	2	2
	Klebsiella pneumoniae	20	2	2
	Proteus mirabilis	20	2	2
	Salmonella	20	3	3
Non-fermenting Gram-negative bacilli	Pseudomonas aeruginosa	20	3	3
	Stenotrophomonas maltophilia	20	4	4
	Acinetobacter spp.	20	4	4
	Burkholderia cepacia	20	8	8
Gram-negative coccobacilli	Haemophilus influenzae	20	6	6
and othe Gram-negative bacilli	Pasteurella spp.	20	4	4
	Aeromonas spp.	20	3	3
Staphylococcus	Staphylococcus aureus	20	4	4
	Staphylococcus epidermidis	20	4	4
Streptococcus	Streptococcus pneumoniae	20	3	4
	Streptococcus agalactiae	20	3	4
	Streptococcus mitis	20	4	6
	Streptococcus pyogenes	20	3	4
Nutritionally deficient bacteria	Abiotrophia	20	6	8
	Granulicatella adiacens	20	6	8
Enterococcus	Enterococcus faecalis	20	3	3
	Enterococcus faecium	20	3	3
Gram-positive aerobic	Listeria monocytogenes	20	4	6
bacilli	Bacillus spp.	20	4	4
	Corynebacterium spp.	20	16	16
Yeast	Candida glabrata Candida albicans	20 20	6 (sufficent yeast biomass but no reliable identification)	

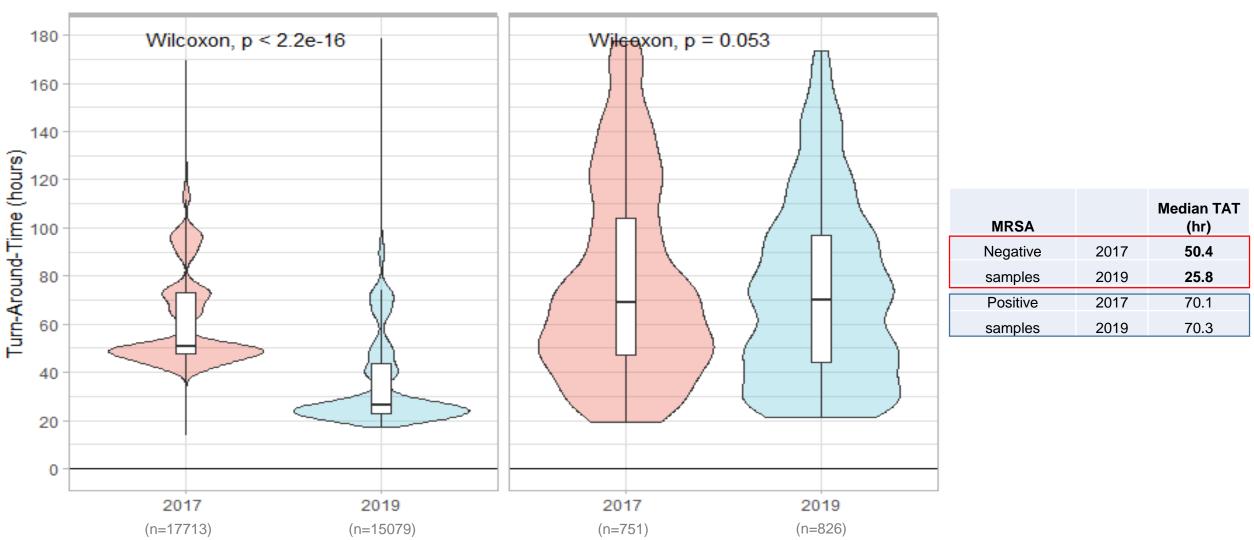
 Table 1
 Minimal incubation times required for MALDI-TOF /MS-based species identification and AST by disk diffusion from short subcultures growing on solid media incubated on the Copan WASPLab

Impact of total laboratory automation on turnaround times for urine cultures and screening specimens for MRSA, ESBL, and VRE carriage: retrospective comparison with manual workflow

Abdessalam CHERKAOUI^{1*}, Gesuele RENZI¹, Romain MARTISCHANG¹, Stephan HARBARTH¹, Nicolas VUILLEUMIER¹, Jacques Schrenzel¹

Impact of total laboratory automation on turnaround-time for culture-based bacteriological testing

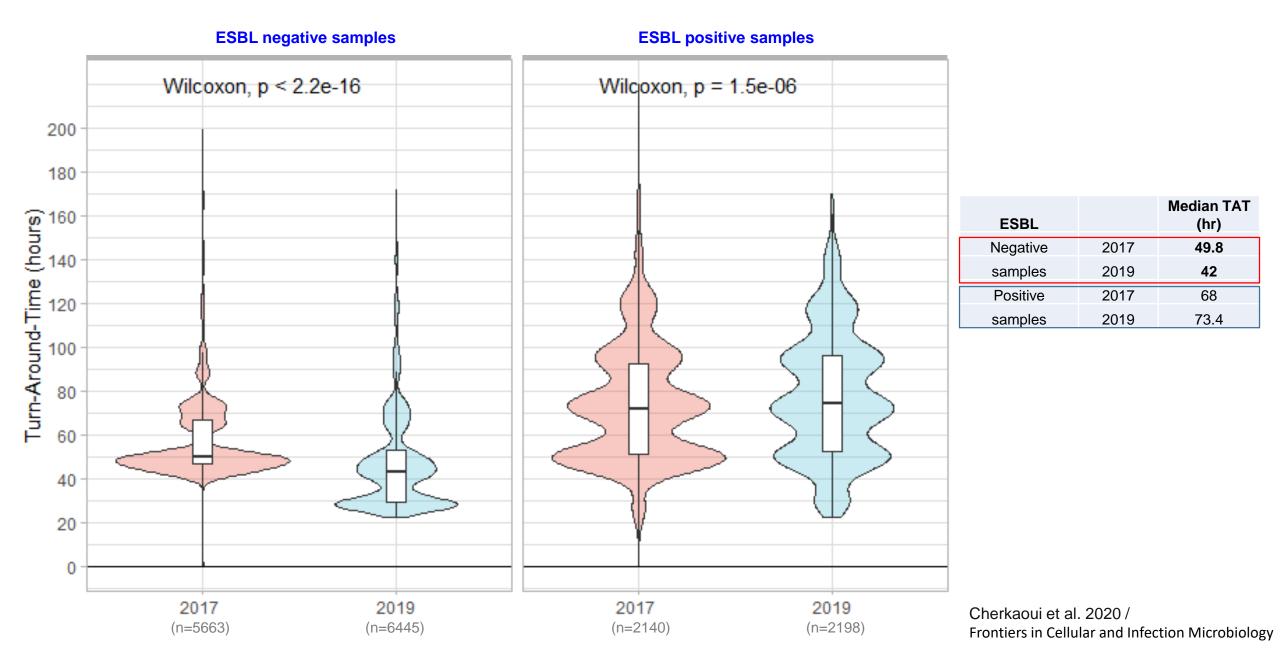
			of samples in this study	% of positive samples			Time points for digital images acquisition on WASPLab				
Clinical sample type Solid culture media type	2017	2019	2017	2019	Plating volume, μl	Picture at T0	First time point, hr	Second time point, hr	Final time point, hr	Ref.	
Urine specimens	CHROMID® CPS® Elite (BioMérieux)	19937	18226	51% (10080/19937)	51% (9343/18226)	10	Yes	18	No	24	[1]
Nasal and inguinal/perineal screening-Eswab for MRSA	CHROMID® MRSA (BioMérieux)	18464	15905	4% (751/18464)	5% (826/15905)	30	Yes	No	No	18	[1]
Rectal screening- Eswab for ESBL	CHROMID® ESBL (BioMérieux)	7803	8643	27% (2140/7803)	25% (2198/8643)	30	Yes	No	No	16	[1]
Rectal screening- Eswab for VRE	CHROMID® VRE (bioMérieux)	1973	7464	2% (45/1973)	0.8% (58/7464)	30	Yes	18	24	30	[2]

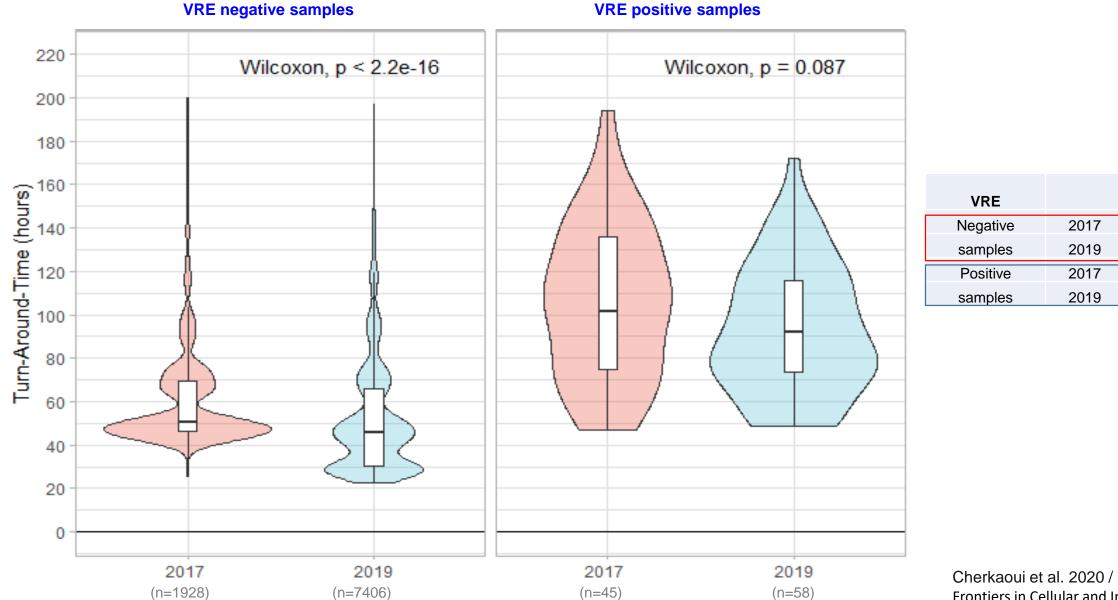

Table 1 Workup of bacterial culture, samples included in this study, and analysis parameters on the WASPLab based on previous studies.

1) Cherkaoui et al. Clinical Microbiology and Infection April 2019

2) Cherkaoui et al. Frontiers in Cellular and Infection Microbiology Nov. 2019

Turnaround time (from reception of samples to when the result is released to the ordering provider) for nasal and inguinal/perineal screening-ESwab for methicillin-resistant *Staphylococcus aureus* (**MRSA**) by culture


MRSA negative samples


MRSA positive samples

Cherkaoui et al. 2020 / Frontiers in Cellular and Infection Microbiology

Turnaround time (from reception of samples to when the result is released to the ordering provider) for rectal screening-ESwab for extended-spectrum beta-lactamases (**ESBLs**) by culture

Turnaround time (from reception of samples to when the result is released to the ordering provider) for rectal screening-ESwab for vancomycin-resistant *Enterococcus* (VRE) by culture

Frontiers in Cellular and Infection Microbiology

Median TAT

(hr)

50.6

45.7

102

92.2

Turnaround time (from reception of sample to when the result is released to the ordering provider) for a urine culture

Urine negative samples Urine positive samples 220 Wilcoxon, p < 2.2e-16Wilcoxon, p < 2.2e-16200 180 160 140 120 100 80 60 40 20 0 2017 2019 2017 2019 (n=9857) (n=10080) (n=8883) (n=9343)

UrineMedian TAT
(hr)Negative201751.3samples201927.3Positive201754.8samples201952.5

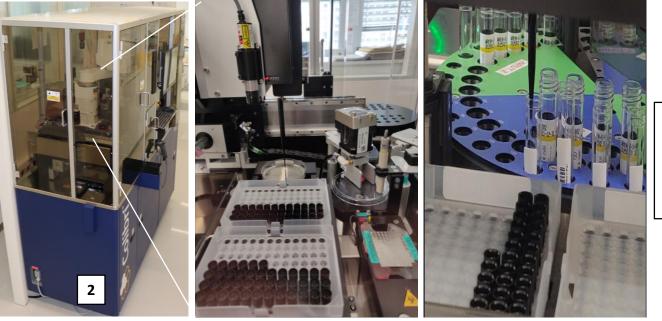
Cherkaoui et al. 2020 / Frontiers in Cellular and Infection Microbiology

Impact of Total Laboratory Automation on TAT

	Year	Urine	cultures (h)		ng for MRSA riage (h)		ing for ESBL riage (h)		ning for rriage (h)
Negative samples	2017	52.1	P < 0.001	50.7	P < 0.001	50.2	P < 0.001	50.6	P < 0.001
	2019	28.3		26.3		43.0		45.7	
Positive samples	2017	56.2	P < 0.001	69.2	P = 0.053	72.0	P < 0.001	102.0	P = 0.087
	2019	54.0		70.2		74.4		92.2	

TABLE 2 | Turnaround-times (from reception of samples to delivery of the culture results).

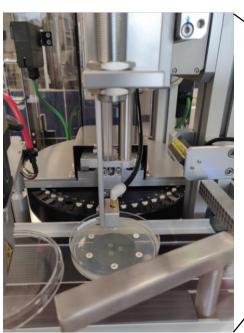
Fully Automated solution for Antimicrobial Disk Diffusion Susceptibility Testing


Versus

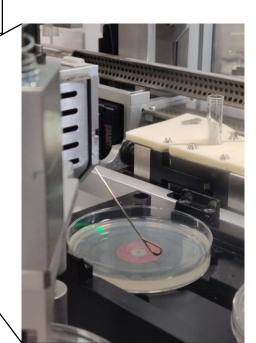
Performance of Fully Automated Antimicrobial Disk Diffusion Susceptibility Testing Using Copan WASP Colibri Coupled to the Radian In-Line Carousel and Expert System

^{(D}Abdessalam Cherkaoui,^a Gesuele Renzi,^a Nicolas Vuilleumier,^b Jacques Schrenzel^{a,c}

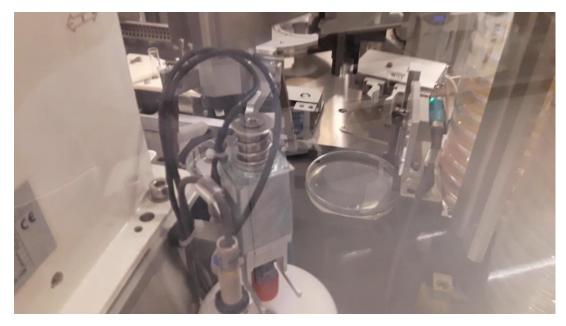
^aBacteriology Laboratory, Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland ^bDivision of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland ^cGenomic Research Laboratory, Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland **September 2021 Volume 59 Issue 9 e00777-21**

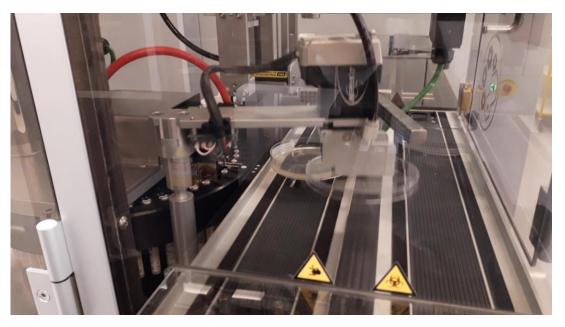


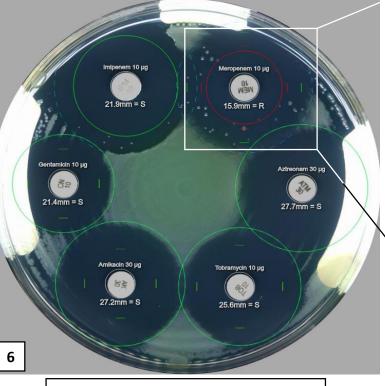
2) Colibri[™] The AST inoculum is prepared in strict accordance with the manufacturer's instructions 1) WASPLab® : digital plate images To capture the relevant heterogeneity profiles for the same strain, the minimum number of pickpoints required by the system to prepare the AST inoculum is defined as follows :

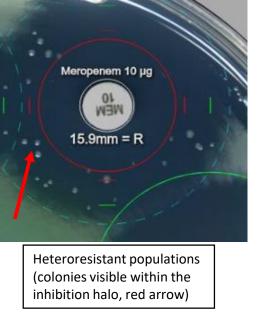

- Six different pickpoints for Gram positive bacteria
- Four different pickpoints for Gram negative bacteria

3) WASP[™]: The AST inoculum (2x30 µl loop/spreader) is spread over the entire surface of the round Mueller-Hinton agar plate according to the defined AST streaking pattern
4) Radian[™] in Line Carousel: distributes the antibiotic discs








Traditional Manual Process

Fully Automated Process

5) WASPLab[®] AST Line : AST plates are digitized after 16 hours of incubation

6) Radian[™] Expert System: Automatic reading of the inhibition zone diameters and AST interpretation for *Pseudomonas aeruginosa* strain

Figure-1 (Parts 1 to 6): Workflow of a fully automated solution for antimicrobial disk diffusion susceptibility testing (Colibri[™], WASP[™], Radian[™] in-Line Carousel, and Radian[™] Expert System)
 Colibri[™] prepares the inocula for 10 strains within 21 min
 AST Line (WASP[™] + Radian[™] in Line Carousel) executes AST for 10 strains (i.e. 40 media plates and 200 antibiotic discs) within 44 min

Antibiotics	Resistance rate % (no.	Categorical agreement between the		coupled to ian [™]	VITEK 2 [®] system	
	of isolates)	isolates) compared Very methods (%) er		Major error	Very major error	Major error
Enterobacterales species (r	ו=292)					
Ampicillin	66 (193)	100				
Amoxicillin/Clavulanate	37 (108)	99.7		1		
Piperacillin/Tazobactam	21 (62)	98.6		2	2	
Cefuroxime	25 (73)	100				
Ceftazidime	22 (63)	99.3		2		
Ceftriaxone	22 (63)	99.3		2		
Cefepime	19 (56)	99		1	3	
Imipenem	6 (18)	98.6		2	1	1
Meropenem	7 (19)	99.7			1	
Ertapenem	17 (49)	97.6		3	4	
Amikacin	7 (19)	99.7			1	
Gentamicin	15 (45)	99.7		1		
Norfloxacin	35 (101)	100				
Ciprofloxacin	29 (85)	99.3				2
Co-trimoxazole	35 (103)	99.7		1		
Pseudomonas aeruginosa	(n=198)			Г		
Piperacillin	43 (85)	94	1		11 (incl. 5*)	
Piperacillin/Tazobactam	33 (65)	98.5			1	2
Ceftazidime	28 (56)	99.5		1		
Cefepime	28 (55)	99		1	1*	
Imipenem	30 (60)	98.5	1		2*	
Meropenem	27 (53)	98			4*	
Amikacin	24 (47)	99.5				1
Gentamicin	21 (42)	99				2
Tobramycin	23 (46)	100				
Ciprofloxacin	25 (49)	99.5				1
Levofloxacin	31 (61)	99			2 (incl. 1*)	

The overall categorical agreements between the two compared methods

99.3% (4350/4380; 95% CI 99% to 99.5%)

98.6% (2147/2178; 95% CI 98.0% to 99.0%)

The most important cause of the very major errors encountered on the Vitek 2 for *P. aeruginosa* (62%, 13/21) was related to the presence of heteroresistant populations

*Presence of colonies within the inhibition halo (heteroresistance detected only by disk diffusion)

Chambulance and the 105	of isolates)		Colibri [™] coupled to Radian [™]			[®] system	
Chambula agains and in 105		compared methods (%)	Very major error	Major error	Very major error	Major error	The overall categorical agreements between the two compared methods
Staphylococcus spp. (n=185	including 107	Staphylococcus a	<i>aureus</i> and 78	Coagulase-neg	ative staphyle	ococci)	
Cefoxitine	32 (60)	100					
Gentamicin	21 (39)	100					99.4% (1,839/1,850; 95% CI 98.9% to 99.7%
Ciprofloxacin	32 (60)	99.5			1		55.4 % (1,855/1,850, 55% C1 58.5% C 55.7%
Clindamycin	29 (53)	100					
Erythromycin	34 (62)	100					
Fusidic acid	26 (48)	100					These very major errors were reported only
Co-trimoxazole	23 (42)	94.6			10		→ for coagulase-negative staphylococci (one S.
Rifampicin	3 (6)	100					hominis and nine S. epidermidis)
Tigecyclin	0	100					No strictly explication has been found
Linezolid	0	100					
Enterococcus spp. (n=43 incl	luding 38 Enter	rococcus faecalis	and 5 Entero	coccus faecium)		
Ampicillin	9 (4)	97.7		1			
Imipenem	9 (4)	97.7			1		
Gentamicin	9* (4)	100					
Linezolid	0	100					99.4% (342/344; 95% CI 97.9% to 99.8%)
Teicoplanin	0	100					
Vancomycin	0	100					
Tigecycline	0	100					
Nitrofurantoin	0**	100					

	Colibri coupl AST		VITEK 2 system		
Isolates tested (no. of strains)	Cost	EUR)	Cost (EUR)		
	Avg per isolate	Total	Avg per isolate	Total	
Enterobacterales (292)	4.6	1343.2	8	2336	
Pseudomonas aeruginosa <mark>(</mark> 198)	3.18	629.6	8	1584	
Staphylococcus spp. (185)	3.05	564.3	8	1480	
Enterococcus spp. (43)	2.79	120	8	344	
Total		2657.1		5744	

Table-3 : Consumable costs estimate of the AST performed by the two compared methods

For AST by Colibri coupled to Radian AST line, we included only the costs of the media plates and of the specific panel of antibiotic discs tested For the AST by VITEK 2, we included only the costs of the AST cards

Conclusions

The Colibri coupled to the Radian provide a fully automated solution for AST by disk diffusion with an accuracy that is equal to or better than that of the Vitek 2 system.

By implementing the full automation of AST process in a stepwise manner (IT development, validation of the performances, staff training, and then routine implementation) we have become able to reach 97% (95 to 110 AST panels per day / 270 to 300 plates) of our routine AST panels performed by the Colibri coupled to the Radian within 5 months.

Colibri coupled to Radian	VITEK 2 system
Fully automated method	Semiautomated method
Easy to change the antibiotics tested	
Greatest flexibility and cost-effectiveness	Less flexible and more expensive (susceptibility cards)
Reliable for detecting heteroresistant subpopulations	Low sensitivity for the detection of heteroresistant subpopulations
Easy to see test failures (e.g., mixed inoculum)	Purity check plates are mandatory (more consumable and additional
	workload)
More accurate detection of new resistance mechanisms	Problems in detecting some patterns of carbapenemases (e.g., OXA-48-like
	producers)
Applicable to many fastidious organisms	The range of drug dilution is usually very narrow
Inability to provide precise data regarding the level of an organism's	Provides a good approximation of the MIC
resistance or susceptibility	

TABLE 3 Hallmarks of the phenotypic AST methods compared in this study

Impact clinique de l'automation...

- Valeur médicale
 - Réduire les temps de rendu de <u>résultats médicalement actionnables</u>
 - Détection / exclusion de pathogènes MDRO
 - Identification rapide des pathogènes
 - Antibiogrammes rapides

Merci pour votre attention