

Comment identifier un métabolite sans accès à une base de donnée dédiée en MS ? Des pistes pour les produits naturels par une approche métabolomique contextualisée

Jean-Luc Wolfender, Pierre Marie Allard, Adriano Rutz, Arnaud Gaudry, Luis Guerrero, Louis Felix Nothias School of Pharmaceutical Sciences, University of Geneva, Switzerland

wHxOvNz

Looking at a natural extract with LC-MS based metabolite profiling

Ridder, L., et al. Anal. Chem. 2014, 86, 4767-4774.

Information from UHPLC-HRMSⁿ profiling

-13.831

-198

Nuno Bandeira

Mingxun Wang

BGNPS

100

MS/MS molecular networking

MS/MS molecular networking

Screening of Euphorbiaceae for chemodiversity

Creation of MN of 290 Euphorbiaceae extracts

Spectral networking = Molecular networking ?

What is the correct molecular formula

Tandem mass spectral databases for small molecule identification

Kind T, et al. (2017) Identification of doi 10.1002/mas.21535

folecules using accurate mass MS/MS search. *Mass Spectrom. Rev.*:

In silico fragmentation with CFM-ID

Prenylated stilbenes in various Macaranga spp.

Additionnal computational tools

SIRIUS+CSI:FingerID

CSI:FingerID (Compound Structure Identification: FingerID) is a method for searching a MS/MS of a small molecule (metabolite) in a database of molecular structures.

ZODIAC performs de novo molecular formula

annotation on complete biological datasets (high-

resolution, high mass accuracy LC-MS/MS runs).

SIRIUS

COSMIC is a workflow that allows you to assign confidence to structure

annotations.

CANOPUS

CANOPUS is a tool for predicting compound classes directly from MS/MS with no DB

Lehrstuhl Bioinformatik Jena

Friedrich-Schiller-Universität Jena, Fakultät für Mathematik und Informatik

Duhrkop, K., Fleischauer, M., Ludwig, M., Aksenov, A. A., Melnik, A. V., Meusel, M., Dorrestein, P. C., Rousu, J. and Bocker, S. (2019). SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. *Nat. Meth.* **16**, 299-+.

nature methods

Explore content V About the journal V Publish with us V

nature > nature methods > brief communications > article

Brief Communication | Published: 18 March 2019

SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information

Kai Dührkop, Markus Fleischauer, Marcus Ludwig, Alexander A. Aksenov, Alexey V. Melnik, Marvin Meusel, Pieter C. Dorrestein, Juho Rousu & Sebastian Böcker ⊠

- What is the molecular formula of the query compound among all molecular formulas, both previously observed and unobserved?
- Given a database of molecular structures, what is the structure that best explains the experimental data?

SIRIUS 4 aims to identify the molecular formula of the query compound and annotate the MS/MS spectrum with a fragmentation tree.

SIRIUS overview talk. Marcus Ludwig UNIVERS

FRIEDRICH-SCHILLER-

CANOPUS: compound class annotation

Dührkop, K., Nothias, L. F., Fleischauer, M., Reher, R., Ludwig, M., Hoffmann, M. A., Petras, D., Gerwick, W. H., Rousu, J., Dorrestein, P. C. and Böcker, S. (2021). Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. *Nat. Biotechnol.* 39, 462-471.

Natural product class prediction by canopus

Dührkop, K., Nothias, L. F., Fleischauer, M., Reher, R., Ludwig, M., Hoffmann, M. A., Petras, D., Gerwick, W. H., Rousu, J., Dorrestein, P. C. and Böcker, S. (2021). Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. *Nat. Biotechnol.* 39, 462-471.

CANOPUS: compound class annotation

Tripathi, A., et al. Nature Chemical Biology 2021, 17, 146-151.

L. F. Nothias

CANOPUS class annotation in MN

Alkaloids
Amino acid derivatives
Carbohydrates
Fatty acid derivatives
Polyketides
Phenylpropanoids
Terpenoids

Thesis L. Pélissier UNIGE

Improve annotation by contextualization of the data through the taxonomy of the producing organisms

MS²

A given MS feature in a specific:

Species: *G. lutea* Genus: *Gentiana* Family: *Gentianaceae*

Rutz, A., et al. Front Plant Sci 2019, 10, 1329.

Re-reranking of annotation candidates

Feature ID	Spectrum	Biological source	Candidate structures	Score S ₁	Initial Rank	Candidate biological source	Score S ₂	Combined Score (S ₁ + S ₂) /2	Final Rank
1			INCHIKEY-4	0.45	4		1	0.78	1
			INCHIKEY-1	0.55	1		0.6	0.58	2
			INCHIKEY-2	0.53	2	*	0.4	0.47	3
			INCHIKEY-3	0.50	3		0	0.25	4

Rutz, A., et al. Front Plant Sci 2019, 10, 1329.

Re-reranking of annotation candidates

Bioactive Natural Products Prioritization Using Massive Multiinformational Molecular Networks

Olivon F, Allard PM, Koval A, Righi D, Genta-Jouve G, Neyts J, Apel C, Pannecouque C, Nothias LF, Cachet X, Marcourt L, Roussi F, Katanaev VL, Touboul D, Wolfender JL, Litaudon M. Bioactive Natural Products Prioritization Using Massive Multi-informational Molecular Networks. *ACS Chem Biol* 2017.

MN of the biodiverse Pierre Fabre collection

DES 80 ENCES

Pierre Fabre

MN of the biodiverse Pierre Fabre collection

FONDS NATIONAL SUISSE SCHWEIZERISCHER NATIONALFONDS FONDO NAZIONALE SVIZZERO Swiss National Science Foundation

Taxonomical visualization

Pie chart mapping with bioactivity

Bioactivity mapping: bioactivity score

Bioactivity score representation

From spectral network to chemical space

RESEARCH ARTICLE

Open Access

Visualization of very large high-dimensional data sets as minimum spanning trees

Daniel Probst^{*}[®] and Jean-Louis Reymond^{*}[®]

The LOTUS Initiative for Knowledge Sharing in Natural Products Research

The LOTUS Initiative for Knowledge Sharing in Natural Products Research

LOTUS chemical space organized as a TMAP

Annotations of the PF library on LOTUS TMAP

Cherry picking of intersecting NPs in the chemical space of annotations

High resolution targeted isolation

Acknowledgments

FNSNF

FONDS NATIONAL SUISSE SCHWEIZERISCHER NATIONALFONDS FONDO NAZIONALE SVIZZERO SWISS NATIONAL SCIENCE FOUNDATION

