What microorganisms tell us about the impact of engineered nanoparticles in aquatic environment

Centre de complétences Chimie et Toxicologie Analytiques

25 èmes Journées Scientifiques

Notre environnement est-il toxique ?

Vera I. Slaveykova vera.slaveykova@unige.ch

Slaveykova@ccCTA2022

jeudi 15 et vendredi 16 septembre 2022 Eurotel Victoria, Les Diablerets, VD

Outline

- Benefits over risk of nanomaterials
- Nanomaterial aquatic microorganisms interaction and effects
 - Green algae
 - Particle-ingestive unicellular organisms
 - Conclusion and outlook

Nanomaterials are changing our world

"There's Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics" lecture at annual American Physical Society meeting at Caltech on December 29, **1959**

Richard P. Feynman

"arrange the atoms the way we want"

"Nanotechnology is the 6th truly revolutionary technology introduced in the modern world..." --D. Allan Bromley

Former Assistant for Science and Technology to the President George H. W. Bush (1989-1993)

- 6064 nanoproducts by 827 companies in 47 countries (2016)
- Global nanotechnology market expected to exceed US\$ 125 Billion by 2024
- 6 million workers in nanotech by 2020

(Research and Markets , May 02, 2018)

Nanotechnology is based on novel chemical entities: nanoparticles

DE GENÈVE

Building blocks: from a few hundred atoms to millions of atoms

Novel properties at nanoscale:

- electrical
- mechanical
- optical
- chemical
- biological

Nano gold is red in collor Bulk gold is yellow in collor

britishmuseum.

Slaveykova@ccCTA2022

The Lycurgus, a 4th-century Roman glass cage cup⁴

Nanos and the environment: Lots of promise

 "Nanos" that outperform "ordinary" materials are used for improved detection and removal of chemical substances and biological contaminants, such as viruses, bacteria, parasites (biocides)

The downside

Nanosilver is more toxic to non-target organisms than to bacteria

Hazard ranking

L(E)C50 or MIC	EU classification
> 100 mg/L	Not harmful/not classified
10-100 mg/L	Harmful
1-10 mg/L	Тохіс
< 1mg/L	Very toxic

Median L(E)C50 and MIC \pm minimum and maximum are shown

Bondarenko et al. Archives of toxicology, 1181 (2013)

How to benefit by the nanotechnology, while minimizing and avoiding possible risks?

Do ENPs represent environmental risk?

 Measured AgNPs concentrations 0.3 to 3200 ng/L in surface waters

J. Zhao et al. Crit. Rev. Environ. Sci. Technol., 51 (2021), 1443

Understanding of the interactions of ENPs with environmental and living systems is a key for enabling an appropriate risk assessment

Opportunities and Risks of Nanomaterials National Research Programme NRP 64

ENPs - aquatic microorganisms interactions

- How do ENPs affect aquatic microorganisms?
- How do aquatic microorganisms alter ENPs fate?

Experimental design

Nanomaterials:

Amidine Latex Carboxyl Latex

Organisms: at various levels of the food-web and different feeding pattern

Dissolution: GIME, A4F-UV-ICP-MS, Ultrafiltration Aggregation: FCS, A4F-UV-ICP-MS Abiotic ROS

Potential for shading: Attenuation of the different light spectrum components by spectrophotometry **Association to biota:** FCS, FCM, Imaging, spICPMS **Internalization and excretion:** FCM, Imaging, ICP-MS **Bioassays**: Growth inhibition, oxidative stress, membrane damage *FCM*; photosynthetic yield;

Metabolomics: Metabolome responce /quantification of metabolite abundance LC MS/MS

PtNPs effect on green algae

 Concentration–response courbes for PtNPs based on the total Pt concentration

PtNPs

2 nm starch-coated Pt NPs Hydrodynamic size of 10 nm Z-potential (48h): -28 ± 0.3 mV Contain dissolved Pt about 3% of the total Pt content (1-48h, ultracentrifugation)

- Decreased growth rates of both P. subcapitata and C. reinhardtii
- *P. subcapitata* is more sensitive to PtNPs than *C reinhardtii*
- PtNPs would be classified as "harmful" to algae in accordance with the EU regulation

	L(E)C50 or MIC	EU classification
	> 100 mg/L	Not harmful/not classified
	10-100 mg/L	Harmful
	1-10 mg/L	Toxic
	< 1mg/L	Very toxic

Multiple mechanisms behind the observed effects

Slaveykova@ccCTA2022

Effect is a result of a myriad of interactions

- **1.** Contribution of shading
- 2. Dissolved Pt

DE GENÈVE

- 3. Cellular ROS generation
- 4. Pt accumulation by algae

1. Contribution of shading effect

48h- growth inhibition

DE GENÈVE

PtNPs limited the available light for algal growth by shading, thus inhibiting growth physically rather than by a toxic action of the PtNPs

- physical shading from PtNPs lowered the algal growth rates
- but also indicate that PtNPs inhibit algal growth rates by other means than shading, possibly by direct toxic effects

2. Contribution of dissolved Pt

Dose-response curves for PtNPs based on the dissolved Pt concentration

C. reinhardtii

- PtNPs data aligned with the PtCl₄ data
 - suggesting that the PtNP toxicity may be caused by the dissolved Pt.

P. subcapitata

- PtNPs data based on dissolved Pt showed greater inhibition than PtCl₄
 - → suggesting a possible NP-specific effect

- Pt-NPS induced nign oxidative stress, but recovery at 48n
- Different sensitivity of algae to Pt-NPs
- Pt ions contribute to the effect to *C. reinhardtii*, but not to the effect to *P. subcapitata*

AgNPs and golden-brown alga Ochromonas malhamensis

- 20nm citric coated AgNPs
- Z-potential (24h): -23 ± 4.3 mV
- Hydrodynamic size of 60nm in synthetic lake water, agglomeration
- Dissolved Ag 4-5% of the total Ag content (ultracentrifugation)

Liu et al. Sci Rep. 10, 20563 (2020)

AgNPs are toxic to golden-brown alga Ochromonas malhamensis

	L(E)C50 or MIC	EU classification
EC 50 AgNPs	> 100 mg/L	Not harmful/not classified
8 mg/L	10-100 mg/L	Harmful
	1-10 mg/L	Тохіс
	< 1mg/L	Very toxic

1 mg/L AgNPs; 40 μ g/L Ag⁺

UNIVFRSITÉ

DE GENÈVE

- Excessive cellular ROS generation
- Membrane damage; Photosynthetic yield decrease

Liu et al. Sci Rep. 10, 20563 (2020)

AgNPs are ingested by golden-brown alga Ochromonas malhamensis

TEM imaging and Energy-dispersive X-ray spectroscopy of *O. malhamensis* exposed to 1mg/L AgNPs, 2h and 24h

Single AgNPs of 20nm size are localized in the cellular vacuale

Liu et al. Sci Rep. 10, 20563 (2020)

AgNPs dysregulate algal metabolism

2h exposure to 1 mg/AgNPs and 40μg/L Ag⁺

Targeted metabolomics LC MS/MS

Partial Least Squares - Discriminant Analysis

90 metabolites quantified

Antioxidants, Amines, Nucleobase/side/tide, amino, organic and fatty acids, Sugar/sugar alcohols

- Good separation between Agtreatments and control
- AgNPs and dissolved Ag have distinct effect at 2h on the metabolic pathways, but not at 24h

Liu et al. Sci Rep. 10, 20563 (2020)

AgNPs dysregulate algal metabolism

2h exposure to 1 mg/AgNPs and 40μg/L Ag⁺ Targeted metabolomics LC MS/MS

Partial Least Squares - Discriminant Analysis

- Overlap of differentially impacted metabolites in AgNPs and Ag⁺
 - → Significant fraction of AgNPs effects originate from released Ag⁺
- Some changes were specific to Ag NPs treatment

Overview on AgNPs - induced metabolicpathway alterationUpregulated
MetabolitesDownregulated
Metabolites

DE GENÈVE

Liu et al. Sci Rep. 10, 20563 (2021)

Take-home message

- NPs-organism interactions have multiple dimensions and the NPs-induced effects are a result of a myriad of direct and "indirect" interactions
- Knowledge is necessary to guide the informed decision about the possible environmental consequences of the nanotechnology and selection of the materials in environmental applications

Outlook

The role of aquatic microorganisms in ENPs fate and transformations

Environmental implications of nanoand microplastics

Thank you for your attention!

Opportunités et risques des nanomatériaux Programme national de recherche PNR 64

