De la chimie à la biologie: les nouvelles frontières de l'analyse des médicaments de dernière génération

26^{ème} Journée Scientifique du cCCTA « Biologie-Chimie, l'entre deux mondes...» 14 – 15 septembre, Villars-sur-Ollon, Suisse

Valentina D'Atri, PhD

🕢 valentina.datri@unige.ch

Where are we in terms of new modalities?

https://www.bcg.com/publications/2023/benefits-and-risks-of-new-drug-modalities

What is gene therapy?

Therapy that targets the genetic root cause of a specific disease

A working copy of the defective gene is delivered as therapeutic drug

How to deliver a therapeutic gene?

Two different strategies are possible for delivering a therapeutic gene

Timeline of the FDA-approved gene therapies

Three AAV-based therapies currently approved by the FDA

^{*} https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products

Adeno-Associated Virus (AAV) as vectors for gene delivery

AAV are a safe and attractive vectors for gene delivery

Analytical methods to be stablished for AAV-based gene therapy

Parameter	Method
Full/Empty Capsid	AUC (gold standard), TEM (gold standard), IEX, SEC-MALS, CE-SDS/cIEF
Aggregation and Fragmentation	SEC, SEC-MALS, DLS
Capsid Integrity (VP1-3 Ratio)	RPLC, CE-SDS/cIEF
Capsid Identity (VP1-3 Ratio), PTM	LC-MS
Particle Concentration (viral titer)	SEC-MALS, ELISA
Genomic titer, genomic identity	qPCR/ddPCR
Infectivity, potency, mode of action	Cell based assays

AUC = Analytical Ultra Centrifugation; TEM = Transmission Electron Microscopy; IEX = Ion Exchange Chromatography, SEC = Size Exclusion Chromatography; MALS = Multi-angle Light Scattering; DLS = Dynamic Light Scattering; ELISA = Enzyme-Linked Immunosorbent Assay; RPLC = Reversed-Phase Liquid Chromatography; CE-SDS = Capillary electrophoresis sodium dodecyl sulfate; cIEF = capillary IsoElectric Focusing; q/ddPCR = quantitative/droplet digital Polymerase Chain Reaction

IEX method to quantify Full vs Empty capsids

Empty rAAV capsids represent a productrelated impurity that need to be monitored and quantified as represent a safety concern.

Generic salt-mediated AEX gradient conditions for rAAV Empty and Full capsids separation

Product related impurity

→ Reduce effective concentration
→ Compete for binding sites
→ Increase immunogenicity
→ Reduce efficacy

Issue = Empty and Full rAAV capsids have the same size and minor p/ difference (0.4 pH) so poor chromatographic resolution is generally obtained.

Gradient conditions = linear gradient of BTP buffer pH 9.0 in combination with NaCl as eluent salt. FLD detection = λ_{ex} at 280 nm and λ_{em} at 350 nm. Injection volume = 20 µL of 1.00 E+12 vp/mL samples diluted in water. Column = Thermo ProPac SAX-10 50 x 4 mm, 10 µm (nonporous PEEK column hardware)

Koche

Buffer scouting plus pH and salt screening

Higher resolution obtained when using tetramethylammonium chloride (TMAC) as eluent salt.

pH 8.6

R = n.a.

F/E = 1.00

pH 8.8

R = n.a.

F/E = 1.01

pH 9.0

R = 0.70

F/E = 1.01

pH 9.2

R = 0.90

F/E = 1.02

pH 9.4

R = 0.93

F/E = 1.09

 \rightarrow Gradient conditions: linear gradient of AMPSO buffer pH 9.4 in combination with different eluent salts.

Aebischer et al. IJMS 2022, 23, 12332

Linear gradient optimization is not enough

Higher resolution obtained when using tetramethylammonium chloride (TMAC) as eluent salt.

pH 8.6

pH 8.8

pH 9.0

pH 9.2

pH 9.4

 \rightarrow Gradient conditions: linear gradient of AMPSO buffer pH 9.4 in combination with different eluent salts.

Aebischer et al. IJMS 2022, 23, 12332

ON/OFF mechanism of large molecules (proteins)

Roche

AAV capsids are made of proteins, do they follow an "on/off" retention behavior?

LSS model describes the relationship between solute retention (k) and mobile phase composition (ϕ)

 $\log k = \log k_0 - S \times \varphi$

k = retention factor $\varphi = volume fraction of mobile phase "B" (stronger eluent)$ S = constant for a given solute(describes how sensitive is the retention to φ) $k_0 = (extrapolated) value of k for \varphi = 0$

The slope of these curves drastically increases with the size of the molecule

Large molecules follow an "**ON-OFF**" or "**Bind-and-elute**" retention mechanism

Linear Solvent Strength (LSS)

Fekete et al. Analytical Chemistry 2019, 91, 12954-12961

ON/OFF mechanism of large molecules (proteins)

AAV capsids are made of proteins, do they follow an "on/off" retention behavior?

Fekete et al. Analytical Chemistry 2019, 91, 12954-12961

AAV capsids are made of proteins, do they follow an "on/off" retention behavior?

Optimal gradient conditions modeled by DryLab \rightarrow Isocratic step at 17.5 %B.

Aebischer et al. IJMS 2022, 23, 12332

AAV capsids are made of proteins, do they follow an "on/off" retention behavior?

Optimal gradient conditions modeled by DryLab \rightarrow Isocratic step at 17.5 %B.

Remarkable improved resolution obtained when applying the step gradient method!

Aebischer et al. IJMS 2022, 23, 12332

Method validation by Full/Empty quantification

Samples from Virovek

Samples from Sirion Biotech

Evaluation of the method from a quantitative perspective: the area of each peak was additive, linear and specific to the empty and full rAAV

The developed method has the potential to be used in QC environment!!

Aebischer et al. IJMS 2022, 23, 12332

Capsid integrity evaluation (VP1-3 Ratio)

Common PTMs = phosphorylation, deamidation, oxidation, acetylation...

Large sequence homology (51 – 99%) among VPs derived from different AAV serotypes

VPs are generally analyzed by CE-based techniques. CE-SDS/cIEF are routinely applied for their excellent resolving power of the VPs.

CE-SDS = Capillary electrophoresis sodium dodecyl sulfate; cIEF = capillary IsoElectric Focusing

Capsid integrity evaluation by LC-based methods

VPs are generally analyzed by CE-based techniques. CE-SDS/cIEF are routinely applied for their excellent resolving power of the VPs.

← RPLC/MS is used as valid orthogonal approach!

RPLC mode Waters Protein BEH C4 column (300A, 1,7 um, 2,1x150mm); Gradient 32% to 36%B in 16 min. MPA = 0,1% DFA in water, MPB = 0,1% DFA in ACN. FR = 0,2 mL/min, T = 80°C.

REF RPLC = Zhang et al. Human Gene Therapy 2021, 32, 1501-1511;

CE-SDS = Capillary electrophoresis sodium dodecyl sulfate; cIEF = capillary IsoElectric Focusing

HILIC is an extremely interesting option as it has a complementary retention mechanism to RPLC.

Separation of both oxidized and phosphorylated VP proteoforms!

<u>US 2020/0131533 A1 (Apr 30, 2020)</u>

REF = Liu et al. JPBA 2020, 189, 113481

VPs are made of proteins, do they follow an "on/off" retention behaviour?

Use of the workflow in 5 steps (Murisier et al. Separations 2022, 9, 243) to develop multi-isocratic elution methods in RPLC, HILIC, and HIC.

Murisier et al. Separations 2022, 9, 243 & Aebischer et al. IJMS 2023, 24, 8503

Roche

VPs are made of proteins, do they follow an "on/off" retention behaviour?

Use of the workflow in 5 steps (Murisier et al. Separations 2022, 9, 243) to develop multi-isocratic elution methods in RPLC, HILIC, and HIC.

Patented HILIC mode (Liu et al. JPBA 2020)

Waters Glycoprotein BEH Amide column (300A, 1.7 um, 2.1 x 150mm); Injection volume = $3 \times 1 \mu L$ (multiple loading) MPA = 0.1%TFA in water MPB = 0.1%TFA in ACN T = $60 \degree C$ FR = $0.2 \mmode mL/min$ Gradient = linear with initial ramp at 85%B **Optimized HILIC mode (Aebischer et al. IJMS 2023)** Waters Glycoprotein BEH Amide column (300A, 1.7 um, 2.1 x 50mm); **Injection volume = 0.3 µL** MPA = 0.1%TFA in water **MPB = 0.1%TFA in ACN:IPA 80:20** T = 40°C FR = 0.4 mL/min Gradient: multi-step gradient with premixed MPs

Liu et al. JPBA 2020, 189, 113481 & Aebischer et al. IJMS 2023, 24, 8503

Method development in HILIC mode: optimized linear gradient

A = [ACN/IPA, 80/20] + 0.1% TFA / H2O + 0.1% TFA (79/21) B = [ACN/IPA, 80/20] + 0.1% TFA / H2O + 0.1% TFA (67/33)

7 15 min

40 °C

() 0.4 mL/min

1. Generic linear gradient with premixed MPs

2. Optimized linear gradient with premixed MPs

Aebischer et al. IJMS 2023, 24, 8503

Roche

3. Multi-step gradient with premixed MPs

26.10

26.20

40

55.4

36.5

36.5

Time (min)	% B	
0	36.5	1 0
0.50	36.5	4 - 1 + 2
2.50	36.5	
2.51	37.0	54
4.51	37.0	
4.52	37.4	-52 -1 $/$ 4
6.52	37.4	- 50
6.53	37.8	
8.53	37.8	
8.54	38.3	
10.54	38.3	\frown 4 - $[$
10.55	38.7	
12.55	38.7	
13.55	45.0	
15.55	45.0	
15.56	47.1	
17.56	47.1	36 0
17.57	49.2	
19.57	49.2	2 4 6 8 10 12 14 16 18 20 22 24 26 16 18 20 22 24
19.58	51.2	time (min) time (min)
21.58	51.2	
21.59	53.3	
23.59	53.3	
23.60	55.4	Concention of 11 vinel protoin verients at

Separation of 11 viral protein variants at chromatographic level!

Aebischer et al. IJMS 2023, 24, 8503

Conclusions

Improved selectivity by using multi-isocratic elution (

- Feasible for rAAV capsids
- Feasible for rAAV VPs
- Best selectivity gain when limited number of peaks to deal with (as for rAAV capsids application)
- Complex gradient program when dealing with large number of peaks (as for rAAV VPs application)

Acknowledgements

Dr Davy Guillarme Megane Aebischer

FACULTÉ DES SCIENCES Section des sciences pharmaceutiques

Dr Thomas Bouvarel Emmalyn Barrozo Hugo Gizardin-Fredon

Dr Raphael Ruppert

Dr Markus Haindl Carsten Elger Dominik Kochardt

Waters Dr Szabolcs Fekete

THANK YOU FOR YOUR KIND ATTENTION!!

valentina.datri@unige.ch

FACULTÉ DES SCIENCES SECTION DES SCIENCES PHARMACEUTIQUES

